Cyclin B1 is a critical target of RhoB in the cell suicide program triggered by farnesyl transferase inhibition.
نویسندگان
چکیده
Farnesyl transferase inhibitors (FTIs) have displayed limited efficacy in clinical trials, possibly because of their relatively limited cytotoxic effects against most human cancer cells. Therefore, efforts to leverage the clinical utility of FTIs may benefit from learning how these agents elicit p53-independent apoptosis in mouse models of cancer. Knockout mouse studies have established that gain of the geranylgeranylated isoform of the small GTPase RhoB is essential for FTI to trigger apoptosis. Here we demonstrate that Cyclin B1 is a crucial target for suppression by RhoB in this death program. Steady-state levels of Cyclin B1 and its associated kinase Cdk1 were suppressed in a RhoB-dependent manner in cells fated to undergo FTI-induced apoptosis. These events were not derivative of cell cycle arrest, because they did not occur in cells fated to undergo FTI-induced growth inhibition. Mechanistic investigations indicated that RhoB mediated transcriptional suppression but also accumulation of Cyclin B1 in the cytosol at early times after FTI treatment, at a time before the subsequent reduction in steady-state protein levels. Enforcing Cyclin B1 expression attenuated apoptosis but not growth inhibition triggered by FTI. Moreover, enforcing Cyclin B1 abolished FTI antitumor activity in graft assays. These findings suggest that Cyclin B1 suppression is a critical step in the mechanism by which FTI triggers apoptosis and robust antitumor efficacy. Our findings suggest that Cyclin B1 suppression may predict favorable clinical responses to FTI, based on cytotoxic susceptibility, and they suggest a rational strategy to address FTI nonresponders by coinhibition of Cdk1 activity.
منابع مشابه
Activation of the RhoB Signaling Pathway by Thyroid Hormone Receptor β in Thyroid Cancer Cells
Thyroid hormone receptor (TR) mediates the crucial effects of the thyroid hormone (T3) on cellular growth, development, and differentiation. Decreased expression or inactivating somatic mutations of TRs have been found in human cancers of the liver, breast, lung, and thyroid. The mechanisms of TR-associated carcinogenesis are still not clear. To establish the function of TRβ in thyroid cancer c...
متن کاملRecent advances in understanding the antineoplastic mechanisms of farnesyltransferase inhibitors.
Farnesyltransferase (FTase) inhibitors (FTI) have broad antineoplastic actions targeting both cancer cells and mesenchymal cells involved in tumor angiogenesis. The small GTPases H-Ras, Rheb, and RhoB and the centromere proteins CENP-E and CENP-F are relevant targets of farnesylation inhibition; however, their relative importance in the antineoplastic effect of FTIs may vary in different cell t...
متن کاملReversion of RhoC GTPase-induced inflammatory breast cancer phenotype by treatment with a farnesyl transferase inhibitor.
Inflammatory breast carcinoma (IBC) is a highly aggressive form of locally advanced breast cancer that has the ability to invade and block the dermal lymphatics of the skin overlying the breast. In a previous series of studies, our laboratory identified overexpression of RhoC GTPase in >90% of IBCs (K. L. van Golen et al., Clin. Cancer Res., 5: 2511-2519, 1999) and defined RhoC as a mammary onc...
متن کاملBlocked pathways: FTIs shut down oncogene signals.
Ras proteins play fundamental roles in cell signal transduction pathways that regulate cell growth, differentiation, proliferation, and survival. ras mutations are among the most frequently encountered genetic abnormalities in human cancers and play a key role in tumorigenesis. The enzymatic attachment of a 15- or 20-carbon moiety to the Ras protein through farnesylation or geranylgeranylation,...
متن کاملRhoB prenylation is driven by the three carboxyl-terminal amino acids of the protein: evidenced in vivo by an anti-farnesyl cysteine antibody.
Protein isoprenylation is a lipid posttranslational modification required for the function of many proteins that share a carboxyl-terminal CAAX motif. The X residue determines which isoprenoid will be added to the cysteine. When X is a methionine or serine, the farnesyl-transferase transfers a farnesyl, and when X is a leucine or isoleucine, the geranygeranyl-transferase I, a geranylgeranyl gro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 64 22 شماره
صفحات -
تاریخ انتشار 2004